
A programming language for Storyblok.
https://www.blokscript.com/

https://www.blokscript.com/

Problem

copy whatever we want in storyblok

from space A

to space B

where level of effort = low.

Solution

//

// ONE BLOKSCRIPT STATEMENT SOLVES THIS PROBLEM.

//

copy blocks

from space 'Advance'

to space 'Napa'

where name matches regex '^oil'

or name ends with 'viscosity';

copy blocks

from space A

to space B;

DEV Space

QA Space

Storyblok
Management

API

Public Internet

https://api-us.storyblok.com

How It Works

BlokScript calls the Storyblok Management API for you.
You don't need to know anything about the API to use it.

Language & Interpreter Design Goals

• Domain specific. Storyblok native concepts are built-in.
• Solution driven. Primary goal is to move things around.
• Explicit, easy to read. At the cost of being “noisy” to write.
• SQL-like. Similar operations and constraints have a natural fit.
• Larger user audience. Users that don't know APIs can use it.
• Informative. BlokScript gives you stats & tells you what it's doing.

Copying Blocks

//

// COPY BLOCKS TO ANOTHER SPACE.

// THE BLOCK IS CREATED OR UPDATED.

// SEE ALSO: delete blocks

//

copy blocks

 from space 'Advance'

 to space 'Napa'

where name like 'oil%';

Copying Stories

//

// COPY SPECIFIC STORIES TO ANOTHER SPACE.

// SEE ALSO: delete, publish, unpublish.

//

copy stories

 from space 'Advance'

 to space 'Napa'

where url starts with '/penn';

Publishing Stories

//

// PUBLISH SELECTED STORIES IN A SPACE.

// SEE ALSO: unpublish stories

//

publish stories in space 'Napa'

where any tag in ('product', '2024-07-15');

Managing Datasources

//

// CREATE A DATASOURCE. COPY TO ANOTHER SPACE.

// SEE ALSO: update, delete,

//

create datasource 'Competitors' in space 'Advance';

copy datasources in space 'Advance' to space 'Napa';

Managing Datasource Entries

//

// CREATE A DATASOURCE ENTRY.

// SEE ALSO: update, delete, copy

//

create datasource entry 'AutoZone'

 in datasource 'Competitors'

 in space 'Advance';

Variables

//

// int, string, regex, block, datasource, story

//

var Advance = space 'Advance';

var Napa = space 'Napa';

copy stories from Advance to Napa

where name starts with 'Schaeffer';

QA Space

Content Promotion

PROD Space

copy stories from space 'QA' to space 'PROD';

1

A large amount of content is
created in a pre-production
environment. Instead of
manually recreating that
content, we want to “promote”
it to PROD.

2 We can do this using one line of BlokScript.

DEV Space

QA Space

copy blocks

from space 'DEV'

to space 'QA'

where name matches regex /^napa/;

Slicing

1

Spaces are expensive, so the
DEV and QA schemas both
support multiple sites. We
want to promote only the Napa
blocks to QA.

2

We can slice by content and schema.
The intent here is to improve
development operations while using
less spaces.

QA Space

Moon Unit Alpha Space

copy blocks

from space 'QA'

to space 'Moon Unit Alpha'

where name matches regex /^alpha/;

Splicing

Moon Unit Zappa Space

copy blocks

from space 'QA'

to space 'Moon Unit Zappa'

where name matches regex /^zappa/;

1

Spaces are expensive, so the
QA schema supports multiple
sites. We want to move those
blocks to the appropriate
space in PROD.

2
We can splice by content and schema. The intent here is to take
advantage of the performance and reliability of multiple spaces.

QA Space

PROD Space

“Backcopying” Content For Testing

UAT Space

copy stories

from space 'PROD' to space 'UAT'

where url like '%new_stuff%';

copy stories

from space 'PROD' to space 'QA';

1

Sometimes we want to
know if production
content will work in a
pre-production
environment, so we
copy it “back” to see if
the app still works.

Napa Space

Datasource Loading

Advance Space

copy datasource entries

from datasource 'Competitors' in space 'Advance'

to datasource 'Competitors' in space 'Napa'

where name != 'Napa';

1

create datasource entry 'Advance'

in datasource 'Competitors' in space 'Napa';
2

competitors.json

copy datasource entries

in file 'competitors.json'

to datasource 'Competitors' in space 'Napa'

where name != 'Napa';

3

delete datasource entry 'Napa'

in datasource 'Competitors' in space 'Napa';
4

DEV Space

copy blocks from 'DEV' to 'QA'

where name starts with 'napa';

Slicing & Splicing
PROD1 Space

PROD2 Space
QA Space

Slice
PROD3 SpaceSplice1 This illustrates a potential strategy to use more

spaces for production purposes.

Other BlokScript Features

• Automatic local caching of space objects to reduce API calls.
• Automatic throttling, recovery & retry of API calls.
• Automatic selects the right create or update API method and/or

endpoint to call.
• Syntactic sugar to make the code writing experience better. These

space literals are all equivalent:
• space 1234567

• space '1234567'

• space '#1234567'

• You can also save to files.
• copy spaces to file 'spaces.json';

BlokScript Implementation Details

• Written in C# and compatible with every .NET runtime.
• ANTLR for lexer and parser generation.
• Newtonsoft for JSON processing.

BlokScript Is Free & Open Source (GNU v3)

• Code and website both open sourced to the community.
• https://github.com/cwses1/blokscript
• https://github.com/cwses1/blokscript-dot-com

https://github.com/cwses1/blokscript
https://github.com/cwses1/blokscript-dot-com

End of Presentation Thoughts

• BlokScript (BS) Jokes
• “Just *.bs your way through it like you do every other problem.”
• “A little bit of BS goes a long way.”

• Deep Thoughts
• “Why Program by Hand in Five Days what You Can Spend Five Years of

Your Life Automating?” - Terence Parr
• “Civilization advances by extending the number of important operations

which we can perform without thinking of them. ” - Alfred North
Whitehead

	Slide 1
	Slide 2: Problem
	Slide 3: Solution
	Slide 4: How It Works
	Slide 5: Language & Interpreter Design Goals
	Slide 6: Copying Blocks
	Slide 7: Copying Stories
	Slide 8: Publishing Stories
	Slide 9: Managing Datasources
	Slide 10: Managing Datasource Entries
	Slide 11: Variables
	Slide 12: Content Promotion
	Slide 13: Slicing
	Slide 14: Splicing
	Slide 15: “Backcopying” Content For Testing
	Slide 16: Datasource Loading
	Slide 17: Slicing & Splicing
	Slide 18: Other BlokScript Features
	Slide 19: BlokScript Implementation Details
	Slide 20: BlokScript Is Free & Open Source (GNU v3)
	Slide 21: End of Presentation Thoughts

